EMC Crosstalk between PCB Traces

West Michigan EMC Chapter Meeting - May 30, 2013

Bogdan Adamczyk, Ph.D., iN.C.E.
Grand Valley State University
Outline

1. Electromagnetic fields and crosstalk
2. Inductive and capacitive coupling
3. Circuit model
4. Circuit analysis
5. PCB measurements
6. Conclusions and design implications
PCB Crosstalk

Crosstalk - unintended electromagnetic coupling between PCB traces.

Voltage (or current) from one circuit, called the *generator or aggressor circuit*, induces voltage (or current) at the terminals of another circuit, called the *receptor or victim circuit*.

Important EMC concern: design the product that does not interfere with itself.
PCB Geometry and Fields Coupling

PCB Geometry

Magnetic field coupling

Electric field coupling

EMC Chapter Meeting May 30, 2013
Fields Coupling vs. Inductive and Capacitive Coupling

Magnetic field coupling:
\[I_G \]

Inductive coupling:
\[V_R = \frac{d\Psi_R}{dt} = L_m \frac{dI_G}{dt} \]

Electric field coupling:
\[q_G \]

Capacitive coupling:
\[I_R = \frac{dq_G}{dt} = C_m \frac{dV_G}{dt} \]
EMC problem to solve:

Given: $V_S(t), R_S, R_L, R_{NE}, R_{FE}$

Determine: $V_{NE}(t), V_{FE}(t)$
Crosstalk Model in Receptor Circuit

Generator and Receptor Circuit Model

Crosstalk Model in Receptor Circuit
Principle of Superposition

Receptor circuit with both sources present
Partial Induced Voltages

\[V_{NE}(t) = \frac{R_{NE}}{R_{NE} + R_{FE}} L_m \frac{dI_G}{dt} \]

\[V_{FE}(t) = -\frac{R_{FE}}{R_{NE} + R_{FE}} L_m \frac{dI_G}{dt} \]

\[V_{NE}(t) = \frac{R_{NE}R_{FE}}{R_{NE} + R_{FE}} C_m \frac{dV_G}{dt} \]

\[V_{FE}(t) = \frac{R_{NE}R_{FE}}{R_{NE} + R_{FE}} C_m \frac{dV_G}{dt} \]
Total Induced Voltages

Receptor circuit

\[V_{NE}(t) = \frac{R_{NE}}{R_{NE} + R_{FE}} L \frac{dI_G}{dt} + \frac{R_{NE} R_{FE}}{R_{NE} + R_{FE}} C \frac{dV_G}{dt} \]

Total induced voltage at near end.

\[V_{FE}(t) = -\frac{R_{FE}}{R_{NE} + R_{FE}} L \frac{dI_G}{dt} + \frac{R_{NE} R_{FE}}{R_{NE} + R_{FE}} C \frac{dV_G}{dt} \]

Total induced voltage at far end.
Total Induced Voltages

Relationship between the generator signals and the source signals, valid for electrically short traces:

\[
V_G(t) \approx \frac{R_L}{R_S + R_L} V_S(t)
\]

\[
I_G(t) \approx \frac{1}{R_S + R_L} V_S(t)
\]

Total induced voltage at near end.

\[
V_{NE}(t) = \left[\frac{R_{NE}}{R_{NE} + R_{FE}} L_m \left(\frac{1}{R_S + R_L} \right) \right] + \left[\frac{R_{NE} R_{FE}}{R_{NE} + R_{FE}} C_m \frac{R_L}{R_S + R_L} \right] \frac{dV_S(t)}{dt}
\]

Total induced voltage at far end.

\[
V_{FE}(t) = \left[-\frac{R_{FE}}{R_{NE} + R_{FE}} L_m \left(\frac{1}{R_S + R_L} \right) \right] + \left[\frac{R_{NE} R_{FE}}{R_{NE} + R_{FE}} C_m \frac{R_L}{R_S + R_L} \right] \frac{dV_S(t)}{dt}
\]
PCB Board
PCB Board Layout
Experimental Set-Up
Case 1

![Diagram showing Aggressor Signal with rise time = 100 ns and fall time = 200 ns. Victim Line - Near End showing 1.54 mV and 760 µV. Victim Line - Far End showing 260 µV and 560 µV.]

- Aggressor Signal
- Rise time = 100 ns
- Fall time = 200 ns
- 1V_{PP}
- 25 mils
- 54.8 mils
- Case 1
- 1.54 mV
- 760 µV
- 260 µV
- 560 µV
Case 2
Case 3
Design Implications

Induced crosstalk voltage is proportional to \(\frac{dV}{dt} \) and board geometry.

To reduce crosstalk:

- Increase the rise and fall times
- Move ground plane closer to the signal plane
- Move signal traces in the signal plane farther apart
Crosstalk in Frequency Domain

\[\hat{V}_{NE} = \frac{R_{NE}}{R_{NE} + R_{FE}} j\omega L_m \frac{1}{R_S + R_L} \hat{V}_S + \frac{R_{NE} R_{FE}}{R_{NE} + R_{FE}} j\omega C_m \frac{R_L}{R_S + R_L} \hat{V}_S \]

\[\hat{V}_{FE} = -\frac{R_{FE}}{R_{NE} + R_{FE}} j\omega L_m \frac{1}{R_S + R_L} \hat{V}_S + \frac{R_{NE} R_{FE}}{R_{NE} + R_{FE}} j\omega C_m \frac{R_L}{R_S + R_L} \hat{V}_S \]
Transfer Function Response

\[
\hat{V}_{NE} = \frac{R_{NE}}{R_{NE} + R_{FE}} j\omega L_m \frac{1}{R_s + R_L} \hat{V}_S + \frac{R_{NE} R_{FE}}{R_{NE} + R_{FE}} j\omega C_m \frac{R_L}{R_s + R_L} \hat{V}_S
\]

\[
\text{inductive coupling}
\]

\[
\hat{V}_{FE} = -\frac{R_{FE}}{R_{NE} + R_{FE}} j\omega L_m \frac{1}{R_s + R_L} \hat{V}_S + \frac{R_{NE} R_{FE}}{R_{NE} + R_{FE}} j\omega C_m \frac{R_L}{R_s + R_L} \hat{V}_S
\]

\[
\text{capacitive coupling}
\]

\[
\frac{\hat{V}_{NE}}{\hat{V}_S} = j\omega (M_{IND}^{NE} + M_{CAP}^{NE}) = j\omega M_{NE}
\]

\[
\frac{\hat{V}_{FE}}{\hat{V}_S} = j\omega (M_{IND}^{FE} + M_{CAP}^{FE}) = j\omega M_{FE}
\]

Crosstalk increases 20 dB/decade.
Crosstalk at 1 MHz – NE – Case 1
Crosstalk at 10 MHz – NE – Case 1
References and Acknowledgements

B. Adamczyk, J. Teune “EMC Hardware Demonstration – PCB Crosstalk” – 2008 IEEE International EMC Symposium, Detroit, MI

Bill Spence and Pete Vander Wel, Gentex Corp. – Board Design

B. Adamczyk, Lecture Notes, GVSU, 2008-2013
Dennis M. Lewis

Associate Technical Fellow, Boeing

The Impact of Cables and Connectors on Radio Frequency and Microwave Measurement Uncertainties

More details at: http://www.westmichigan-emc.org/